1,825 research outputs found

    Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journalis cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35Ā°C. In wild type mice, the NOS inhibitor, L-NA (100 Ī¼M) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Advanced Surfaces: Their Tailoring and Analysis

    Get PDF
    Advanced surfaces constitute an important component in numerous high technologies today, both industrial and medical. In the Laboratory for Surface Science and Technology at the ETH-ZĆ¼rich, many different surface treatments and processes are being examined, and novel techniques for the examination of such surfaces are also being developed. Among the modification methods described in this review are self-assembled monolayers, chemical vapor deposition, and surface functionalization with peptides. Novel analytical approaches include the extension of atomic force microscopy to allow surface-chemical analysis of oxides and polymers with high spatial resolution, and a waveguide technique, adapted to enable the in situ monitoring of protein adsorption on oxides of relevance to implant applications

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    Radicals in carbonaceous residue deposited on mordenite from methanol

    Get PDF
    It is shown that control of the degree of coking can lead to the observation of hyperfine structures in the carbonaceous residues deposited from methanol over mordenite (H-MOR) at temperatures relevant to the conversion of methanol to hydrocarbons. EPR measurements of the catalyst samples at various times on stream have been recorded, with a rich hyperfine splitting pattern observed in the early stages of the reaction. Interpretation of the EPR data with the aid of density functional theoretical calculations has afforded the first definitive assignment of the radical cations formed in high temperature coke. The results detail a shortlist of six species: 2,3/2,6/2,7-dimethylnaphthalenium, 2,3,6-trimethylnaphthalenium, 2,3,6,7-tetramethylnaphthalenium, and anthracenium radical cations whose proton hyperfine splitting profiles match the experimental spectra; 2,3,6,7-tetramethylnaphthalenium showed the best agreement. The observation of these particular isomers of polymethylnaphthalene suggest the formation of more highly branched polyaromatic species is less likely within the confines of the H-MOR 12-membered ring channel. These radicals formed when the catalyst is active may constitute key intermediates in the conversion of methanol to light olefins

    A novel anterograde neuronal tracing technique to selectively label spinal afferent nerve endings that encode noxious and innocuous stimuli in visceral organs.

    Get PDF
    This article is under embargo for 12 months from the date of publication in accordance with publisher copyright policy. This is the accepted version of the following article: Kyloh, M. and Spencer, N. J. (2014), A novel anterograde neuronal tracing technique to selectively label spinal afferent nerve endings that encode noxious and innocuous stimuli in visceral organs. Neurogastroenterology & Motility, 26: 440ā€“444.], which has been published in final form at [http://dx.doi.org/10.1111/nmo.12266]. In addition, authors may also transmit, print and share copies with colleagues, provided that there is no systematic distribution of the submitted version, e.g. posting on a listserve, network or automated delivery

    A Combinatorial Approach to Elucidating Tribochemical Mechanisms

    Get PDF
    A new type of combinatorial tribological experiment is presented, which explores a series of tribological conditions, such as load and relative velocity, spatially separated as a "libraryā€ on one single sample. As an example, a library displaying the results of tribological testing of an additive under a series of different loads has been prepared and analyzed. The tribological information acquired during the testing has been correlated with spectroscopic information from the tribologically stressed surface. The use of imaging and small-area X-ray photoelectron spectroscopy has allowed the identification of the different tribologically stressed areas and the acquisition of detailed spectroscopic information. The composition and the thickness of the tribofilm were found to be dependent on the applied load. The use of the combinatorial approach shows the potential to greatly facilitate rapid characterization of new lubricant additive
    • ā€¦
    corecore